264 research outputs found

    Deep Photo Style Transfer

    Full text link
    This paper introduces a deep-learning approach to photographic style transfer that handles a large variety of image content while faithfully transferring the reference style. Our approach builds upon the recent work on painterly transfer that separates style from the content of an image by considering different layers of a neural network. However, as is, this approach is not suitable for photorealistic style transfer. Even when both the input and reference images are photographs, the output still exhibits distortions reminiscent of a painting. Our contribution is to constrain the transformation from the input to the output to be locally affine in colorspace, and to express this constraint as a custom fully differentiable energy term. We show that this approach successfully suppresses distortion and yields satisfying photorealistic style transfers in a broad variety of scenarios, including transfer of the time of day, weather, season, and artistic edits

    Practical Color-Based Motion Capture

    Get PDF
    Motion capture systems have been widely used for high quality content creation and virtual reality but are rarely used in consumer applications due to their price and setup cost. In this paper, we propose a motion capture system built from commodity components that can be deployed in a matter of minutes. Our approach uses one or more webcams and a color shirt to track the upper-body at interactive rates. We describe a robust color calibration system that enables our color-based tracking to work against cluttered backgrounds and under multiple illuminants. We demonstrate our system in several real-world indoor and outdoor settings

    Lightweight Face Relighting

    Get PDF
    In this paper we present a method to relight human faces in real time, using consumer-grade graphics cards even with limited 3D capabilities. We show how to render faces using a combination of a simple, hardware-accelerated parametric model simulating skin shading and a detail texture map, and provide robust procedures to estimate all the necessary parameters for a given face. Our model strikes a balance between the difficulty of realistic face rendering (given the very specific reflectance properties of skin) and the goal of real-time rendering with limited hardware capabilities. This is accomplished by automatically generating an optimal set of parameters for a simple rendering model. We offer a discussion of the issues in face rendering to discern the pros and cons of various rendering models and to generalize our approach to most of the current hardware constraints. We provide results demonstrating the usability of our approach and the improvements we introduce both in the performance and in the visual quality of the resulting faces

    Band-Sifting Decomposition for Image-Based Material Editing

    Get PDF
    Photographers often "prep" their subjects to achieve various effects; for example, toning down overly shiny skin, covering blotches, etc. Making such adjustments digitally after a shoot is possible, but difficult without good tools and good skills. Making such adjustments to video footage is harder still. We describe and study a set of 2D image operations, based on multiscale image analysis, that are easy and straightforward and that can consistently modify perceived material properties. These operators first build a subband decomposition of the image and then selectively modify the coefficients within the subbands. We call this selection process band sifting. We show that different siftings of the coefficients can be used to modify the appearance of properties such as gloss, smoothness, pigmentation, or weathering. The band-sifting operators have particularly striking effects when applied to faces; they can provide "knobs" to make a face look wetter or drier, younger or older, and with heavy or light variation in pigmentation. Through user studies, we identify a set of operators that yield consistent subjective effects for a variety of materials and scenes. We demonstrate that these operators are also useful for processing video sequences

    A Gaussian Approximation of Feature Space for Fast Image Similarity

    Get PDF
    We introduce a fast technique for the robust computation of image similarity. It builds on a re-interpretation of the recent exemplar-based SVM approach, where a linear SVM is trained at a query point and distance is computed as the dot product with the normal to the separating hyperplane. Although exemplar-based SVM is slow because it requires a new training for each exemplar, the latter approach has shown robustness for image retrieval and object classification, yielding state-of- the-art performance on the PASCAL VOC 2007 detection task despite its simplicity. We re-interpret it by viewing the SVM between a single point and the set of negative examples as the computation of the tangent to the manifold of images at the query. We show that, in a high-dimensional space such as that of image features, all points tend to lie at the periphery and that they are usually separable from the rest of the set. We then use a simple Gaussian approximation to the set of all images in feature space, and fit it by computing the covariance matrix on a large training set. Given the covariance matrix, the computation of the tangent or normal at a point is straightforward and is a simple multiplication by the inverse covariance. This allows us to dramatically speed up image retrieval tasks, going from more than ten minutes to a single second. We further show that our approach is equivalent to feature-space whitening and has links to image saliency

    User-assisted intrinsic images

    Get PDF
    For many computational photography applications, the lighting and materials in the scene are critical pieces of information. We seek to obtain intrinsic images, which decompose a photo into the product of an illumination component that represents lighting effects and a reflectance component that is the color of the observed material. This is an under-constrained problem and automatic methods are challenged by complex natural images. We describe a new approach that enables users to guide an optimization with simple indications such as regions of constant reflectance or illumination. Based on a simple assumption on local reflectance distributions, we derive a new propagation energy that enables a closed form solution using linear least-squares. We achieve fast performance by introducing a novel downsampling that preserves local color distributions. We demonstrate intrinsic image decomposition on a variety of images and show applications.National Science Foundation (U.S.) (NSF CAREER award 0447561)Institut national de recherche en informatique et en automatique (France) (Associate Research Team “Flexible Rendering”)Microsoft Research (New Faculty Fellowship)Alfred P. Sloan Foundation (Research Fellowship)Quanta Computer, Inc. (MIT-Quanta T Party

    GANSpace: Discovering Interpretable GAN Controls

    Full text link
    This paper describes a simple technique to analyze Generative Adversarial Networks (GANs) and create interpretable controls for image synthesis, such as change of viewpoint, aging, lighting, and time of day. We identify important latent directions based on Principal Components Analysis (PCA) applied either in latent space or feature space. Then, we show that a large number of interpretable controls can be defined by layer-wise perturbation along the principal directions. Moreover, we show that BigGAN can be controlled with layer-wise inputs in a StyleGAN-like manner. We show results on different GANs trained on various datasets, and demonstrate good qualitative matches to edit directions found through earlier supervised approaches.Comment: Accepted to NeurIPS 202

    Fast Local Laplacian Filters: Theory and Applications

    Get PDF
    International audienceMulti-scale manipulations are central to image editing but they are also prone to halos. Achieving artifact-free results requires sophisticated edge- aware techniques and careful parameter tuning. These shortcomings were recently addressed by the local Laplacian filters, which can achieve a broad range of effects using standard Laplacian pyramids. However, these filters are slow to evaluate and their relationship to other approaches is unclear. In this paper, we show that they are closely related to anisotropic diffusion and to bilateral filtering. Our study also leads to a variant of the bilateral filter that produces cleaner edges while retaining its speed. Building upon this result, we describe an acceleration scheme for local Laplacian filters on gray-scale images that yields speed-ups on the order of 50Ă—. Finally, we demonstrate how to use local Laplacian filters to alter the distribution of gradients in an image. We illustrate this property with a robust algorithm for photographic style transfer
    • …
    corecore